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Abstract—Outsourcing encrypted time series data and query services to a cloud has been widely adopted by data owners for
economic considerations. However, it inevitably lowers data utility and query efficiency. Existing secure skyline query schemes either
leak critical information or are inefficient. In this paper, we propose an efficient and privacy-preserving interval skyline query scheme by
employing symmetric homomorphic encryption (SHE). Specifically, we first devise a secure sort protocol to sort the encrypted dataset
and a secure high-dimensional dominance check protocol to securely determine dominance relations of time series data, in which a
dominance check tree is presented. With these secure protocols, we propose our secure skyline computation protocol that can ensure
both security and efficiency. Furthermore, to deal with the characteristics of time series data, we design a look-up table to index time
series for quick query response. The security analysis shows that our proposed scheme can protect outsourced data, query results,
and single-dimensional privacy and hide access patterns. In addition, we evaluate our proposed scheme and compare the core
component of our scheme with the state-of-the-art solution, and the results indicate that our protocol outperforms the compared
solution by two orders of magnitude in the computational cost and at least 23× in the communication cost.

Index Terms—Interval skyline query, Time series data, Privacy preservation, Access pattern, Symmetric homomorphic encryption.

F

1 INTRODUCTION

T IME series data occurs ubiquitously across human en-
deavors and has a wide range of applications, such

as biological experimental observations, social activity min-
ing, and electricity consumption monitoring [1]–[3]. Hence,
analyzing time series data has attracted extensive re-
searches [1]–[8]. Among them, interval skyline over time
series data, i.e., segments of time series that show dominat-
ing advantages over others, is of particular interest [6]–[8]
since it can capture the time series that have high time series
values in a query interval. For clarity, a real-world example
is illustrated as follows.
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Fig. 1. An example of the interval skyline query over time series data.

Example 1. A hospital provides online medical monitoring for
patients, and a patient’s heart rate can be captured by a time
series. Fig. 1 shows four time series (four patients) with the value
of beats per minute (bpm) in a period from t1 to t8. Assume a
doctor would like to analyze the heart rate of different patients by
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asking “which patients have high bpm in the time interval from
t2 to t7?”. s1 and s3 are interesting to the doctor. That is because
s1 has the highest average bpm, while s3 has the highest bpm at
t5. Regarding s2 and s4, they are ignored since s1 is higher than
both of them at each timestamp of the query interval t2-t7.

In the above example, finding interesting time series
{s1, s3} can be achieved by performing an interval skyline
query. Technically, a time series s is returned if, in the query
interval, there does not exist another time series s′ that
dominates s. Here, “dominate” means a time series is not
worse than the other one at each timestamp and is better
than that time series at least one timestamp [6]. See the
formal definition of dominance and interval skyline query
in Section 3.1.

One of the characteristics of the time series data is that it
involves continuous updates over time, which indicates the
service providers should keep online at all times to receive
the reported data from entities. However, with the data vol-
ume growing, the service providers may pay a great price
to stay online and maintain the data. Accordingly, they tend
to outsource their data and the corresponding services, e.g.,
interval skyline query in this paper, to a third-party cloud
for reaping economic benefits. Nevertheless, it inevitably
raises privacy issues since the real-world time series data
may contain sensitive information, for instance, the medical
data in the above example. To address the privacy challenge,
a promising solution is to encrypt outsourced data and
perform queries over encrypted time series data [9], [10].

However, existing privacy-preserving skyline schemes
investigate over multi-dimensional data rather than time
series data [11]–[14]. Although their core component, i.e.,
securely determining dominance relation (whether one data
record dominates another one), can be used in the privacy-
preserving interval skyline query scheme if we treat each
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timestamp as a dimension, they are either leaking critical
information or inefficient. For example, the solution in [14]
leaks the order relations of each dimension, while the solu-
tion in [12] is expensive though it is secure (see the analysis
of other solutions in Section 8). Therefore, in this paper,
our goal is to propose a privacy-preserving interval skyline
query scheme while ensuring efficiency.

Nevertheless, the following challenges should be dealt
with: i) Privacy preservation. In addition to the privacy of
time series data, our proposed scheme should also pre-
serve single-dimensional privacy [15] and hide access pat-
terns [16], [17]. That is because revealing these information
may incur inference attacks on the outsourced data [18],
[19]. Here, single-dimensional privacy indicates the order
or equality relation of values in each dimension (times-
tamp). However, in skyline computation, it is essential for
an operator to determine the dominance relation by ob-
taining the order relation of each dimension. Therefore, it
is challenging to compute skyline without leaking single-
dimensional privacy. While for the access pattern, it re-
quires the operator to select skyline points without knowing
which ones are selected. As a result, ensuring these privacy
is challenging in performing interval skyline queries. ii)
Efficiency. To determine dominance relation without leaking
privacy, the state-of-the-art solution [12] checks the order
relation of dimensions one by one, which is expensive
in the communication overhead. As a result, it raises the
question “is there a more efficient solution to determine
dominance relation without compromising privacy?”. iii)
Time series data. The characteristics of time series data elicit
new challenges for computing interval skyline. First, time
series data are usually high-dimensional, which deteriorates
the performance of the existing solutions. Second, time
series data continues updates over time. Consequently, it
is not easy to dynamically index these time series data such
that interval skyline queries can be quickly responded as
little storage cost as possible.

Aiming at the above challenges, we propose a novel in-
terval skyline query scheme over encrypted time series data,
in which a lightweight symmetric homomorphic encryption
(SHE) scheme is adopted [20]. Our proposed scheme can
preserve time series data privacy, single-dimensional pri-
vacy, and access patterns while ensuring efficiency. Specifi-
cally, the main contributions of this paper are three-fold.
• First, we carefully design a Secure Sort (SS) protocol

and a Secure High-dimensional Dominance Check (SHDC)
protocol to securely achieve the core operations in the
skyline computation. For the SS protocol, it can securely
sort time series data according to their sum values by using
the privacy-preserving XOR and XNOR gates, in which the
former can be used in quick permutation, while the latter
can be used to hide access patterns. Regarding the SHDC
protocol, it can securely determine dominance relations
without checking order relations for all dimensions one
by one. In particular, we propose a dominance check tree,
denoted as DC-tree, to deal with the high-dimensional time
series data while improving performance.
• Second, based on the SS and SHDC protocols, we

propose a secure skyline computation protocol to compute
skyline over high-dimensional time series data, in which we
employ a new algorithm by modifying the sort-filter-skyline

(SFS) algorithm [21]. In addition, to quickly respond to the
interval skyline query, we design a two-dimensional look-
up table to index the time series data, which can balance
the storage costs and computational costs to cope with
continuous updates of time series data.
• Third, we evaluate the performance of our proposed

scheme and compare the core component with the state-
of-the-art solution [12]. The results show that our protocol
outperforms the compared solution by two orders of mag-
nitude in the computational cost and at least 23× in the
communication cost.

The reminder of this paper is organized as follows. In
Section 2, we introduce our system model and security
model. Then, we review our preliminaries in Section 3.
After that, we introduce the building blocks in Section 4
and present our proposed scheme in Section 5, followed by
security analysis and performance evaluation in Section 6
and Section 7, respectively. Finally, we discuss some related
works in Section 8 and draw our conclusion in Section 9.

2 SYSTEM MODEL AND SECURITY MODEL

In this section, we formalize our system model and security
model.
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Fig. 2. System model under consideration.

2.1 System Model

In our system model, we consider a typical cloud-based
interval skyline query model, which consists of four types
of entities: a service provider SP , a set of data providers
P = {p1, p2, · · · }, a cloud C with two servers {CS1, CS2},
and multiple data users U={u1, u2, · · · }, as shown in Fig. 2.

Service Provider SP : In our system model, SP is an
initiator for the whole system. It offers registration services
to other entities and provides interval skyline query services
to registered data users. However, since SP has limited
storage and computing resources, it outsources the time
series data to a cloud and employs the cloud to offer the
interval skyline query services to users. Before offering these
services, SP generates secret keys and securely distributes
them to different entities in the system.

Data Providers P={p1, p2, · · · }: We consider each reg-
istered smart device as a data provider. A data provider
pi can collect data and report it to the cloud at a cer-
tain time interval. The format of the reported data is:
〈id, timestamp, value〉. Taking a patient with the chronic
heart disease as an example, the implanted body sensor
of the patient reports the heart rate, i.e., beats per minute
(bpm), to the cloud as the format 〈p1, ti, bpm〉, where p1 is
id of the sensor, and ti (i = 1, 2, · · · ) denotes the timestamp.
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For the reported values, we assume all of them are non-
negative integers. It is reasonable since we can easily convert
non-integer data into non-negative integers [22].

Cloud C: In our system, SP employs two cloud servers
C = {CS1, CS2} that are considered as powerful in storage
and computing resources. They will manage the reported
time series data and cooperatively offer reliable interval
skyline query services to data users.

Data users U={u1, u2, ...}: In the system, only the autho-
rized data users can enjoy the interval skyline query services
from the cloud C. That is, in order to obtain desired results
from C, data users must register to SP before launching the
interval skyline query requests.

2.2 Security Model
In our security model, since SP is the service organizer and
has no motivation to deviate from the proposed protocols,
he/she is considered as fully trusted. For data providers
P and data users U , we consider the authorized ones are
honest, i.e., they will honestly report time series data and
launch the interval skyline queries, respectively. However,
in our model, the cloud servers CS1 and CS2 are considered
as honest-but-curious [23], [24]. They will faithfully follow
the designed protocols but may be curious to learn the
private information. For example, the cloud servers may be
interested in the reported heart rate to determine whether
the owner of the sensor has heart disease. As a result, to
ensure privacy, the data providers report the encrypted time
series data: 〈id, timestamp, encrypted value〉. Nonetheless,
the cloud still attempts to obtain the private information,
including the plaintexts of the time series values and query
results, single-dimensional privacy, and access patterns, in
the process of interval skyline queries. Meanwhile, we as-
sume there is no collusion between CS1 and CS2, as well as
no collusion between the cloud servers and other entities. It
is reasonable since they should maintain their reputations
and interests [24]. Note that the two-server model with
the no-collusion assumption has already been considered
in many research works in the security community [24]–
[27]. In addition, regarding other active attacks, e.g., Dos
attack, since our work focuses on the secure computation
techniques, those attacks are beyond the scope of this work
and will be discussed in future work.

3 PRELIMINARIES

In this section, we first formally define the interval skyline
query. Then, we recall the symmetric homomorphic encryp-
tion (SHE) scheme.

3.1 Interval Skyline Query
The interval skyline query is used to compute skyline on
time series data, which was first introduced in [6]. Before
delving into the details, we first present the time series data.

A time series s is a sequence of pairs 〈ti, value〉 ordered
by ti, where ti (i = 1, 2, · · · ) is a timestamp. We denote the
value of s at timestamp ti as s[ti]. Following the assumption
in [6], all time series are synchronized, i.e., each time series
s holds a value s[ti] on a timestamp ti > 0.

Definition 1 (Time Interval). A time interval [ti : tj ] in-
dicates a range in time that contains the set of timestamps
existing between ti and tj (ti < tj). We say that s[ti, tj ] =
(s[ti], s[ti+1], · · · , s[tj ]) is a subsequence of time series s in the
time interval [ti : tj ].

With the above definition, we formally define the inter-
val dominance and interval skyline query as follows.

Definition 2 (Interval dominance). Given two time series s1

and s2, s1 is said to dominate s2 in a time interval [ti : tj ],
denoted as s1 �[ti:tj ] s2, if ∀tk ∈ [ti, tj ], s1[tk] ≥ s2[tk] and
∃tl ∈ [ti, tj ], s1[tl] > s2[tl].

Definition 3 (Interval Skyline Query). Given a set S with n
time series and a time interval [ti : tj ], the interval skyline query
returns a set Ssky ⊆ S , in which the time series are not dominated
by any other time series in S . That is, Ssky = {sk ∈ S | 6 ∃sl ∈
S such that sl �[ti:tj ] sk}. Note that each time series in Ssky

only contains values between ti and tj .

3.2 Symmetric Homomorphic Encryption
SHE is an efficient symmetric homomorphic encryption
scheme that can support homomorphic addition and mul-
tiplication. It was first proposed in [28] and then proved
to be IND-CPA secure in [20]. Concretely, SHE includes
three algorithms, namely i) key generation KeyGen(); ii)
encryption Enc(); and iii) decryption Dec(), as follows:
• KeyGen(k0, k1, k2): Given three security parameters

{k0, k1, k2} satisfying k1 � k2 < k0, the algorithm first
chooses two large prime numbers p, q with |p| = |q| = k0

and sets N = pq. Then, it generates the secret key sk =
(p,L), where L is a random number with |L| = k2, and
the public parameter pp = (k0, k1, k2,N ). Besides, the algo-
rithm sets the basic message spaceM = [−2k1−1, 2k1−1).
• Enc(sk,m): On input of a secret key sk and a message

m ∈ M, the encryption algorithm outputs the ciphertext
E(m) = (rL+m)(1 + r′p) mod N , where r ∈ {0, 1}k2 and
r′ ∈ {0, 1}k0 are random numbers.
• Dec(sk,E(m)): Taking the secret key sk and a ci-

phertext E(m) as inputs, the algorithm recovers a message
m′ = (E(m) mod p) mod L = (rL + m) mod L. If
m′ < L

2 , it indicates m ≥ 0 and m = m′. Otherwise, m < 0
and m = m′ − L.

SHE satisfies the homomorphic addition and multipli-
cation properties as follows: i) Homomorphic addition-I:
E(m1) + E(m2) mod N → E(m1 +m2); ii) Homomorphic
multiplication-I: E(m1) · E(m2) mod N → E(m1 · m2);
iii) Homomorphic addition-II: E(m1) + m2 mod N →
E(m1 +m2); iv) Homomorphic multiplication-II: E(m1) ·m2

mod N → E(m1 ·m2) when m2 > 0.
Encryption with the public key setting. In order to

realize the SHE encryption under public key setting, we take
sk = (p,L) as the private key and use it to generate two ci-
phertexts E(0)1, E(0)2 of 0 with different random numbers.
Then, the public key is set as pk = {E(0)1,E(0)2, pp}. In
such a way, one can use the above homomorphic properties
to encrypt a message m by the following

E(m) = m+ r1 · E(0)1 + r2 · E(0)2 mod N (1)

where r1 and r2 ∈ {0, 1}k2 are two random numbers. For
example, when m = −1, E(−1) can be easily computed by
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Eq. (1). This approach has been formally proven to be IND-
CPA secure in [29]. Note that, since SHE has the limited
number of Homomorphic multiplication-I operations, we
adopt a bootstrapping protocol in [20] to support infinite
multiplication operations.

4 BUILDING BLOCKS

In this section, we introduce the secure subprotocols and
privacy-preserving logic gates, which serve as the building
blocks for constructing more complex protocols.

4.1 Secure Subprotocols
To achieve our privacy-preserving interval skyline query
scheme, we need to compute some basic functions on en-
crypted data. Here, we show Secure Bigger Than (SBT) and
Secure Equal (SEQ) subprotocols to determine whether two
given encrypted inputs (messages) have the bigger than and
equal to relations, respectively. Both of them are deployed
in a two-server model, where CS1 holds encrypted inputs
and pk, while CS2 has the secret key sk.

4.1.1 Secure Bigger Than (SBT) Subprotocol
Given two encrypted messages E(m1) and E(m2), the SBT
subprotocol is to determine whether m1 > m2 without
leaking any m1,m2 related information to CS1 or CS2. If
m1 > m2, the subprotocol outputs E(1), otherwise E(0).
• Step-1: CS1 flips a coin s ∈ {−1, 1} and chooses two

random numbers r1, r2 ∈ {0, 1}k1 satisfying r1 > r2 > 0.
Then, CS1 computes:

E(θ) =E(s · r1) · (E(m1) + E(m2) · E(−1)) + E(s · r2) · E(−1)

=E(s · r1 · (m1 −m2)− s · r2),

where E(−1) can be easily computed from pk via Eq. (1).
After that, CS1 sends E(θ) to CS2.
• Step-2: On receiving E(θ), CS2 uses sk to recover θ and

checks whether θ > 0. If yes, CS2 makes µ = 1 and encrypts
it into E(µ). Otherwise, CS2 generates E(µ) = E(0). Next,
CS2 returns E(µ) to CS1.
• Step-3: If s = 1, CS1 lets E(δ) = E(µ). If s = −1, CS1

computes E(δ) = E(1) + E(µ) · E(−1) = E(1 − µ). Finally,
E(δ) is the output of the SBT subprotocol.

Correctness. When s = 1, we have E(θ) = E(r1 · (m1 −
m2) − r2). If m1 > m2, θ > 0. As a result, E(δ) = E(µ) =
E(1). If m1 ≤ m2, θ < 0. In this case, E(δ) = E(µ) = E(0).
Therefore, when s = 1, iff m1 > m2, the SBT subprotocol
outputs E(δ) = E(1). Similarly, when s = −1, we can prove
that iff m1 > m2, the SBT subprotocol outputs E(δ) = E(1).
Thus, the SBT subprotocol is correct.

4.1.2 Secure Equal (SEQ) Subprotocol
Given two encrypted messages E(m1) and E(m2), the SEQ
subprotocol [30] is to determine whether m1 = m2 without
leaking any m1,m2 related information to CS1 or CS2. If
m1 = m2, the subprotocol outputs E(1), otherwise E(0).
• Step-1: CS1 flips a coin s ∈ {−1, 1} and chooses two

random numbers r1, r2 ∈ {0, 1}k1 satisfying r1 > r2 > 0.
Then, CS1 computes:

E(θ) =E(s · r1) · E((m1 −m2)2) + E(s · r2) · E(−1)

=E(s · r1 · (m1 −m2)2 − s · r2).

After that, CS1 sends E(θ) to CS2.
• Step-2: On receiving E(θ), CS2 uses sk to recover θ and

checks whether θ < 0. If yes, CS2 makes µ = 1 and encrypts
it into E(µ). Otherwise, CS2 generates E(µ) = E(0). Next,
CS2 returns E(µ) to CS1.
• Step-3: If s = 1, CS1 lets E(δ) = E(µ). If s = −1, CS1

computes E(δ) = E(1) + E(µ) · E(−1) = E(1 − µ). Finally,
E(δ) is the output of the SEQ subprotocol.

Correctness. Similar to the SBT subprotocol, the correct-
ness of the SEQ subprotocol is also held.

4.2 Privacy-Preserving Logic Gates
In addition to the secure subprotocols, we also need some
digital logic gates as building blocks to construct our pro-
posed scheme. Here, we introduce two simple privacy-
preserving logic gates: XOR and XNOR [30].

4.2.1 Privacy-Preserving XOR Gate
The XOR gate works by receiving two inputs, each desig-
nated with either 1 or 0. It outputs 0 if the two inputs are
the same. Otherwise, the gate produces 1. If one input is in
plaintext, denoted as a, and the other input is in ciphertext,
denoted as E(b), one can obtain the privacy-preserving XOR
gate by using the following equation.

E(out) = a⊕ E(b) =

{
E(b) if a = 0

E(1− b) if a = 1,
(2)

where E(1 − b) = E(1) + E(b) · E(−1). The privacy-
preserving XOR gate can securely and efficiently compute
the encrypted output E(out). Although the input a is in
plaintext, the output E(out) is kept secret, since the input
b is encrypted.

4.2.2 Privacy-Preserving XNOR Gate
The XNOR gate is the opposite of the XOR gate, i.e., it
outputs 1 if the two inputs are the same. With the same
input setting as the XOR gate, the privacy-preserving XNOR
gate [30] can obtain the encrypted output as follows.

E(out) = a� E(b) =

{
E(1− b) if a = 0

E(b) if a = 1,
(3)

Similarly, E(out) can be quickly computed from E(b) and is
kept secret due to the encrypted input E(b).

5 OUR PROPOSED SCHEME

In this section, we will introduce our privacy-preserving
interval skyline query scheme.

The main idea is to securely realize the SFS algo-
rithm [21] to compute skylines. In the SFS algorithm, the
input dataset is sorted according to a monotone preference
function, e.g., the sum of a data record. Afterward, the
algorithm obtains candidate data records by the descending
order of their function values and then examines dominance
relations between the obtained data record and the existing
skyline points. If the data record is not dominated by all
existing skyline points, it will be added to a skyline set.
We can see that the key operations in the SFS algorithm
are sorting and checking dominance relations. Based on
this observation, we devise a secure sort (SS) protocol and
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introduce a secure dominance check (SDC) protocol to make
the SFS algorithm available while ensuring both efficiency
and security. Furthermore, since the time series data is usu-
ally high-dimensional, we design a secure high-dimensional
dominance check (SHDC) protocol to specially determine
the dominance relation for high-dimensional data.

In the following, we first present SS, SDC, and SHDC
protocols. Then, with these secure protocols, we design
two skyline computation protocols. Finally, we present our
privacy-preserving interval skyline query scheme.

5.1 Secure Protocols

5.1.1 Secure Sort (SS) Protocol
Assume CS1 has a set of d-dimensional data {E(~xi) =
(E(x1

i ),E(x2
i ), · · · ,E(xdi )) | x

j
i ∈ M, i ∈ [1, n], j ∈ [1, d]}

and their sum values E(σi) = E(
∑d
j=1 x

j
i ), and CS2 holds

sk. We also suppose that CS1 has randomly assigned a
unique binary sequence bi = bρi |

dlog2 ne
ρ=1 , where bρi ∈ {0, 1},

to each data record E(~xi), as shown in Fig. 3. The goal of the
SS protocol is to sort the encrypted dataset in descending
order according to the sum values {σi | i ∈ [1, n]} without
leaking underlying plaintexts and access patterns to the
cloud. That is, neither CS1 nor CS2 knows the plaintexts
{(x1

i , x
2
i , · · · , xdi ,

∑d
j=1 x

j
i ) | i ∈ [1, n]} or the link between

the sorted dataset and the original dataset. We describe the
details of our SS protocol as follows:
• Step-1: First, CS1 generates dlog2 ne random bits

{rρ | ρ ∈ [1, dlog2 ne], rρ ∈ {0, 1}}. After that, CS1 computes
a new bit sequence for each data record, denoted as b̂i =

b̂ρi |
dlog2 ne
ρ=1 , by performing the XOR gate b̂ρi = bρi ⊕ rρ (not

privacy-preserving XOR gate). Next, CS1 chooses n+ 1 ran-
dom numbers {r0, r1, · · · , rn} satisfying r0 > ri, i ∈ [1, n].
Finally, CS1 constructs a pair 〈E(σ̂i), b̂i〉 for each data record
and sends n pairs to CS2, where E(σ̂i) = E(r0 · σi + ri).
• Step-2: On receiving these pairs {〈E(σ̂i), b̂i〉 | i ∈

[1, n]}, CS2 first uses sk to recover σ̂i and sorts the bit
sequences {b̂i | i ∈ [1, n]} in a descending order according
to the corresponding σ̂i. Then, CS2 encrypts each bit with
SHE, i.e.,E(b̂ρi ). Next, CS2 returns the sorted and encrypted
bit sequences {E(b̂ρi ) | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} to CS1.
• Step-3: With the random bits {rρ | ρ ∈

[1, dlog2 ne], rρ ∈ {0, 1}} and the received encrypted bit
sequences, CS1 adopts the privacy-preserving XOR gate,
i.e., Eq. (2), to compute a set of new bit sequences {E(δρi ) =
rρ ⊕ E(b̂ρi ) | ρ ∈ [1, dlog2 ne], i ∈ [1, n]}, which indicates the
sorted index of original dataset and is the output of our SS
protocol.

Note that we can further use the privacy-preserving
XNOR gate to compute the sorted dataset. For the k-th data
record, i.e., whose sum value is the k-th largest, one can
obtain {E(xjk) | j ∈ [1, d]} as follows.

E(xjk) =
∑n

i=1
E(xji ) ·

∏dlog2 ne

ρ=1
(bρi � E(δρk)) (4)

Fig. 3 demonstrates an example of our secure sort proto-
col, in which there are four time series from Fig. 1.

Correctness. We say our SS protocol is correct if the en-
crypted bit sequence set {E(δρi ) | ρ ∈ [1, dlog2 ne], i ∈ [1, n]}
represents the sorted indexes {bρi | ρ ∈ [1, dlog2 ne], i ∈
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Fig. 3. Our secure sort protocol.

[1, n]} according to the corresponding sum value σi. In
our SS protocol, CS2 sorts the bit sequences {b̂ρi | ρ ∈
[1, dlog2 ne], i ∈ [1, n]} according to their sum values
{σ̂i | i ∈ [1, n]}. Since r0 > ri and σ̂i = r0 · σi + ri,
{σ̂i | i ∈ [1, n]} keeps the order of {σi | i ∈ [1, n]}.
Meanwhile, since the privacy-preserving XOR gate has the
same truth table as the original XOR gate and b̂ρi = bρi ⊕ rρ,
we have δρi = rρ ⊕ b̂ρi = rρ ⊕ bρi ⊕ rρ = bρi . Besides,
the sorted {b̂ρi | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} means the
set {E(δρi ) | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} is sorted. Thus,
{bρi | ρ ∈ [1, dlog2 ne], i ∈ [1, n]} is sorted according to the
corresponding sum value σi.

5.1.2 Secure Dominance Check (SDC) Protocol
Assume CS1 has two encrypted d-dimensional data records
E(~x1),E(~x2) and pk, while CS2 holds sk. The SDC protocol
is to determine whether~x1 dominates~x2 without leaking the
underlying plaintexts and the single-dimensional privacy to
the cloud. If ~x1 dominates ~x2, the SDC protocol outputs
E(1), otherwise E(0). Note that, since the d-dimensional
data record can be treated as extracting a d-length time
interval from the time series data, here the dominance
relation between ~x1 and ~x2 is equivalent to the interval
dominance (Definition 2) with any d length time interval.
We show the details of the SDC protocol as follows.
• Step-1: First, for the ith-dimension, CS1 flips a coin

si ∈ {−1, 1} and chooses two random numbers ri1, r
i
2 ∈

{0, 1}k1 satisfying ri1 > ri2 > 0. Then, CS1 computes E(θi) =
E(si · ri1 · (xi1 − xi2) + si · ri2). If si = 1, let αi = 2i (hereafter,
2i means 2 to the power of i), otherwise αi = 0. Next, CS1

computes α =
∑d
i=1 α

i and sends {E(θi) | i ∈ [1, d]} to CS2.
• Step-2: On receiving {E(θi) | i ∈ [1, d]}, CS2 first

uses sk to recover θi. If θi > 0, CS2 computes βi = 2i.
Otherwise βi = 0. Afterward, CS2 computes β =

∑d
i=1 β

i

and encrypts it into E(β). Next, CS2 sends E(β) to CS1.
• Step-3: With pk, CS1 encrypts α into E(α). Then, CS1

runs the SEQ subprotocol, where the inputs are E(α) and
E(β), to test whether α = β. If yes, the SEQ subprotocol
returns E(δ1) = E(1), otherwise E(δ1) = E(0).
• Step-4: CS2 first adds up all dimensions of E(~x1) and

E(~x2), i.e., E(σ1) = E(
∑d
i=1 x

i
1) and E(σ2) = E(

∑d
i=1 x

i
2).

Next, CS1 runs the SBT subprotocol to determine whether
σ1 > σ2. If yes, the SBT subprotocol returns E(δ2) = E(1),
otherwise E(δ2) = E(0).
• Step-5: With E(δ1) and E(δ2), CS1 computes E(δ) =

E(δ1) · E(δ2) = E(δ1 · δ2) as the output of the SDC protocol.
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Correctness. As the key idea of the SDC protocol is the
same as the SDD protocol in [30], see the detailed correctness
proof in [30].

5.1.3 Secure High-dimensional Dominance Check (SHDC)
Protocol
With the same assumption as that in the SDC protocol, the
SHDC protocol is to deal with the high-dimensional data.
The stricter assumption of the SHDC protocol is that the
sum value of E(~x1) is no less than that of E(~x2), namely,
σ1 ≥ σ2. In fact, it is easy to answer the assumption by
applying our SS protocol. The main idea of our SHDC
protocol is to convert the high-dimensional data to low
dimensions and then apply the SDC protocol. To achieve it,
we design a dominance check tree, denoted as DC-tree, in
our SHDC protocol, which improves the performance when
checking the dominance relation for high-dimensional data.

Here, we first introduce the DC-tree. For the non-leaf
node, it has two children: left child and right child, and con-
tains three fields: 〈[j1, j2],E(σ

[j1,j2]
1 ),E(σ

[j1,j2]
2 )〉. For the leaf

node, it also has three fields 〈[j1, j2],E(~x
[j1,j2]
1 ),E(~x

[j1,j2]
2 )〉.

We list the detailed description of these fields in Table 1.

TABLE 1
Fields of leaf and non-leaf nodes

Field Description

[j1, j2] a dimension range, [j1, j2] ⊆ [1, d]

E(σ
[j1,j2]
i ) (i = 1, 2) the encrypted sum value of E(~xi) in the

dimension range [j1, j2]. E(σ
[j1,j2]
i ) =∑j2

j=j1
E(xji )

E(~x
[j1,j2]
i ) (i = 1, 2) the sub vector of E(~xi) extracting from

j1 to j2 dimension.

Unlike the traditional tree-based data structure used to
retrieve data, our DC-tree is used to navigate and facilitate
the dominance check. Specifically, the process of tree build-
ing is the running of our SHDC protocol. When the building
process stops, our SHDC protocol outputs the dominance
relation between E(~x1) and E(~x2). Next, we depict the
process of our SHDC protocol as follows.
• Step-1: CS1 first uses the permutation π to per-

mute these two data records (E(x1
i ),E(x2

i ), · · · ,E(xdi )) as
(E(x

π(1)
i ),E(x

π(2)
i ), · · · ,E(x

π(d)
i )), where i = 1, 2. To sim-

plify the description, we ignore the permutation symbol
π in the protocol. Then, CS1 constructs the root node.
Since the underlying plaintext of E(σ

[1,d]
1 ) must be no less

than that of E(σ
[1,d]
2 ) (due to the assumption of σ1 ≥ σ2),

we mark the root node as 〈[1, d],⊥,⊥〉. After that, CS1

divides the d dimensional data records E(~x1) and E(~x2)
into two parts, respectively, in which the left part is
E(~xli) = (E(x1

i ),E(x2
i ), · · · ,E(x

dd/2e
i )) and the right part is

E(~xri ) = (E(x
dd/2e+1
i ),E(x

dd/2e+2
i ), · · · ,E(xdi )). Next, CS1

computes the sum value of these two parts

E(σli) = E(σ
[1,dd/2e]
i ) =

∑dd/2e

j=1
E(xji )

E(σri ) = E(σ
[dd/2e+1,d]
i ) =

∑d

j=dd/2e+1
E(xji ),

and generates 〈[1, dd/2e],E(σl1),E(σl2)〉 and 〈[dd/2e +
1, d],E(σr1),E(σr2)〉 as the root node’s left and right
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Fig. 4. Examples of DC-tree under the assumption of τ = 4.

child nodes, respectively. After choosing random numbers
r1, r2 ∈ {0, 1}k1 satisfying r1 > r2 > 0, CS1 computes
E(θ) = E(r1 · (σl2−σl1) · (σr2 −σr1) + r2) and sends it to CS2.
• Step-2: On receiving E(θ), CS2 first uses sk to recover

θ. If θ > 0, CS2 makes µ = 1. Otherwise µ = 0. Then, CS2

sends µ to CS1.
• Step-3: If the received µ = 0, CS1 will stop the SHDC

protocol (stop building DC-tree) and make δ = 0 as the
output, which means E(~x1) does not dominate E(~x2). If
µ = 1, it indicates we cannot determine whether E(~x1)
dominates E(~x2). As a result, CS1 makes E(~xl1) and E(~xr2)
as new inputs and recursively performs Step-1 and Step-2.
If the number of dimension of E(~xli) and E(~xri ) is less than
τ (usually τ ≥ 4), CS1 will not divide them and will treat
them as leaf nodes: 〈dimension range of E(~xli),E(~xl1),E(~xl2)〉
and 〈dimension range of E(~xri ),E(~xr1),E(~xr2)〉. When all leaf
nodes are generated, CS1 performs the modified SDC
protocol for each leaf node, where the inputs are the sec-
ond and third fields. The modified SDC protocol does not
run Step-4 and Step-5 in the original SDC protocol, and
outputs E(δ1) (in Step-3 of SDC protocol) as the result.
We suppose there are totally p leaf nodes and denote the
output of the modified SDC protocol at each leaf node as
E(δ′i), where i ∈ [1, p]. Afterward, CS1 computes E(δ′) =
E(δ′1) ∧ E(δ′2) ∧ · · · ∧ E(δ′p) =

∏p
i=1 E(δ′i). Next, CS1 obtains

E(δ′′) by performing SBT subprotocol, in which the inputs
are E(σ1) and E(σ2). Finally, E(δ) = E(δ′) ·E(δ′′) = E(δ′ ·δ′′)
will be the output of our SHDC protocol.

Fig. 4 illustrates two examples of DC-tree. The first one is
to determine whether s1 dominates s3, and the second one
is to determine whether s1 dominates s2, in which si (i =
1 to 4) are from Fig. 1. For the first example, since one of
the root node’s children shows that the partial sum of s2

is larger than s1, it is definite that s1 does not dominates
s2. Thus, we stop the tree building and output the result.
For the second example, since µ = 1, CS1 cannot determine
whether s1 dominates s2. As the number of dimensions of
the third level’s nodes is less than 4, they are treated as leaf
nodes and run the modified SDC protocol to determine the
dominance relation.

Correctness. Since we assume that σ1 ≥ σ2, ~x2 certainly
does not dominate ~x1. Therefore, the SHDC protocol only
needs to determine whether ~x1 dominates ~x2. We say our
SHDC protocol is correct if it outputs E(1) when ~x1 domi-
nates ~x2 and outputs E(0) or 0 when ~x1 does not dominate
~x2. First, we prove that when δ = 0, it indicates ~x1 does not
dominate ~x2. From Step-3, we know that when µ = 0, we
have δ = 0. In this case, θ = r1·(σl2−σl1)·(σr2−σr1)+r2 < 0 (θ
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Algorithm 1 Basic Skyline Computation Protocol
Input: An encrypted dataset {E(~xi) | i ∈ [1, n]}. Assigned bit se-

quences for each data record, {bi | i ∈ [1, n]}.
Output: A set containing encrypted skyline data records, Ssky.
1: for i = 1 to n do
2: E(σi) = E(i+ (n+ 1) ·

∑d
j=1 x

j
i );

3: {E(δρi )}=SS({E(~xi,E(σi))}), i ∈ [1, n], ρ ∈ [1, dlog2 ne];
4: E(tj1) =

∑n
i=1 E(x

j
i ) ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1)), j ∈ [1, d];

5: Ssky.add(E(~t1));
6: for i = 2 to n do
7: E(pji ) =

∑n
l=1 E(x

j
l ) ·

∏dlog2 ne
ρ=1 (bρl � E(δρi )), j ∈ [1, d];

8: flag = true;
9: for each data record E(~t) in Ssky do

10: δ= WSHDC(E(~t), E(~pi));
11: if δ == 1 then
12: flag = false;
13: break;
14: if flag == true then Ssky.add(E(~pi)).
15: return Ssky.

is never equal to 0). As a result, there must exist σl2−σl1 > 0
or σr2 − σr1 > 0. Consequently, ∃j ∈ [1, d], ~xj2 > ~xj1. Thus,
~x1 does not dominate ~x2. Then, we prove only E(δ) = E(1)
indicates ~x1 dominates ~x2. Since E(δ′) =

∏p
i=1 E(δ′i), when

E(δ′) = E(1), it means ∀j ∈ [1, d],~xj1 ≥ ~xj2. Further,
E(δ′′) = E(1) indicates ∃j ∈ [1, d],~xj1 > ~xj2. Therefore, only
when E(δ) = E(1), ~x1 dominates ~x2.

In our SHDC protocol, although CS1 knows E(~x1) does
not dominate E(~x2) in some cases, it only knows there exists
one dimension j that ~xj2 > ~xj1. Since we limit the leaf node to
have at least 2 (τ/2 > 2) dimensions, and they are checked
as a whole in the modified SDC protocol, it guarantees
the single-dimensional privacy, i.e., CS1 cannot infer the
order relations of one dimension. Thus, our SHDC protocol
can preserve single-dimensional privacy. For efficiency, our
SHDC protocol will stop if the non-leaf node offers the
no dominance relation, which significantly improves the
performance in dealing with high-dimensional data. See
Section 7.2 for performance evaluations.

5.2 Privacy-Preserving Skyline Computation
Based on the above secure protocols, we present our
privacy-preserving skyline computation protocols. First, we
introduce a basic protocol that is efficient but leaks single-
dimensional privacy in some cases. Then, we introduce a se-
cure protocol without leaking plaintexts, single-dimensional
privacy, and access patterns.

5.2.1 Basic Skyline Computation Protocol
The main idea of the straw-man protocol is to leak the
dominance relations to CS1 so that it can directly adopt
the SFS algorithm to compute skyline. See Algorithm 1 for
the protocol. CS1 first adds up the value of all dimensions
E(σi) = E(

∑d
j=1 x

j
i ) for each data record. To ensure the

same data record holding different sum values, CS1 updates
E(σi) by E(σi) = E(σi·(n+1)+i) showing in lines 1-2. Then,
CS1 uses the SS protocol to sort the original dataset, which
not only sorts the dataset but also breaks the link between
the sorted dataset and the original dataset. Next, the first
data record in the sorted dataset must be a skyline point, as
shown in lines 3-5. In this protocol, we weaken our SHDC
protocol, denoted as WSHDC (see line 10), by returning
a plaintext δ to CS1. In this way, CS1 can know E(~x1)

Algorithm 2 Secure Skyline Computation Protocol
Input: An encrypted dataset {E(~xi) | i ∈ [1, n]}. Assigned bit se-

quences for each data record, {bi | i ∈ [1, n]}.
Output: A set containing encrypted skyline data records, Ssky.
1: X ← ∅,S ← ∅,F ← ∅;
2: for i = 1 to n do
3: E(σi) = E(i+ n+ (n+ 1) ·

∑d
j=1 x

j
i );

4: X .add(E(~xi)); S.add(E(σi)); F .add(E(0));
5: {E(δρi )}=SS({E(~xi)}, {E(σi)}), i ∈ [1, n], ρ ∈ [1, dlog2 ne];
6: E(σmax) =

∑n
i=1 E(σi) ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1));

7: E(σmin) =
∑n
i=1 E(σi) ·

∏dlog2 ne
ρ=1 (bρi � E(δρn));

8: E(MIN) = E(σmin) + E(−1) = E(σmin − 1);
9: cnt = 1, N = n;

10: while BIG(E(σmax), E(MIN)) && Ssky.size < N do
11: E(~t1) =

∑n
i=1 X [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1));

12: Ssky.add(E(~t1));
13: for l = 2 to n do
14: E(~pl) =

∑n
i=1 X [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρl ));

15: flag = true;
16: for each data record E(~t) in Ssky do
17: E(δ)= SHDC(E(~t), E(~pl));
18: if E(δ) 6= 0 then
19: flag = false;
20: break;
21: if flag == true then
22: Ssky.add(E(~pl)).
23: else
24: Define {E(δρi ), bi}, i ∈ [1, n], ρ ∈ [1, dlog2 ne] as a set I;
25: (X , S, F ) = updateSets(X , S, F , l, cnt, I, E(MIN), Ssky);
26: n = X .size, cnt = Ssky.size;
27: Assign new bit sequences {bi | i ∈ [1, n]}.
28: {E(δρi )}=SS(X ,S), i ∈ [1, n], ρ ∈ [1, dlog2 ne];
29: E(σmax) =

∑n
i=1 S[i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρ1));

30: break;
31: return Ssky.

dominates E(~x2) if δ = 1, and E(~x1) does not dominate
E(~x2) if δ = 0. After checking dominance relation of each
data record, CS1 obtains a skyline set, in which data records
are not dominated with each other.

In the basic protocol, if there is no dominance relation
between two data records, CS1 cannot know the actual
order relation of each dimension, i.e., the basic proto-
col can ensure the single-dimensional privacy. Only when
there is dominance relation between them, CS1 knows that
∀j,~xj1 > (or ≥) ~xj2, which is determined by the definition
of dominance. However, the SS protocol is adopted to
sort the original dataset, which makes CS1 learn nothing
about which two data records (in original dataset) have the
dominance relation.

5.2.2 Secure Skyline Computation Protocol
To obtain high efficiency, the basic protocol leaks single-
dimensional privacy in some cases. In order to preserve
this privacy, the intuitive approach is to use our SHDC
protocol and output encrypted value E(δ). However, it
makes Algorithm 1 unavailable, since CS1 cannot determine
whether one data record dominates the other one with the
encrypted value. To tackle this issue, we design a secure
skyline computation protocol that can find skylines in a
secure manner, i.e., protecting underlying plaintexts, single-
dimensional privacy, and access patterns.

Algorithm 2 shows our secure skyline computation pro-
tocol. Compared with the basic protocol, this protocol uses
the SHDC instead of WSHDC to check dominance relations.
Consequently, there are two cases:
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Algorithm 3 Update Sets
Input: Three encrypted sets, X , S, F . A start point, l. A counter, cnt. A

sorted index set, I. An encrypted minimum sum, E(MIN). A skyline
set, Ssky.

Output: Three new encrypted sets, Xnew,Snew,Fnew.
1: Xnew ← ∅,Snew ← ∅,Fnew ← ∅, n = X .size, {E(δ̂ρi ), bi} = I;
2: for k = l to n do
3: E(pjk) =

∑n
i=1 X [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρk)), j ∈ [1, d];

4: E(σk) =
∑n
i=1 S[i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρk));

5: E(fk) =
∑n
i=1 F [i] ·

∏dlog2 ne
ρ=1 (bρi � E(δρk));

6: Xnew.add(E(~pk)), Snew.add(E(σk)), Fnew.add(E(fk));
7: for m = cnt to Ssky.size do
8: E(~tm) = Ssky[m];
9: for k = l to n do

10: E(δ)= SHDC(E(~tm), Xnew[k − l + 1]);
11: if E(δ) == 0 then E(δ) = E(0);
12: Fnew.update(k − l + 1, Fnew[k − l + 1] ∨ E(δ));
13: for k = l to n do
14: randomly choose r ∈ Zn and generate E(r);
15: E(σmin) = E(MIN) + E(r) · E(−1) = E(MIN− r);
16: E(σold) = Snew[k − l + 1];
17: E(σ) = Fnew[k − l + 1] · (E(σmin)− E(σold)) + E(σold);
18: Snew.update(k − l + 1, E(σ));
19: return (Xnew,Snew,Fnew).

Case 1: When the non-leaf node shows there is no
dominance relation between two tested data records, the
SHDC protocol returns 0. If the candidate data record is not
dominated by all skyline points, it will be directly added to
the skyline set. See lines 13-22 for details.

Case 2: When all leaf nodes are checked by the modified
SDC protocol, the SHDC protocol returns E(δ). In this case,
CS1 computes skyline by the fact that the data record that
has the maximum sum value must be a skyline point, as
shown in lines 24-30 and lines 11-12. The main idea is to
maintain a dominance flag set F = {E(fi) | i ∈ [1, n]} and
an encrypted sum set S = {E(σi) | i ∈ [1, n]}. Once the
SHDC protocol outputs an encrypted dominance flag for the
input data record, CS1 updates the following data records’
(note that we have sorted the dataset by our SS protocol)
dominance flags and sum values, as shown in Algorithm 3.

Update dominance flag: Suppose a data record already
has a dominance flag E(fold), fold ∈ {0, 1}. For the data
record, our SHDC protocol outputs an encrypted dominance
flag E(δ), δ ∈ {0, 1}. With these two encrypted data, CS1

updates the dominance flag as follows:

E(fnew) = E(fold) ∨ E(δ)

= E(fold) + E(δ) + E(fold) · E(δ) · E(−1)

= E(fold + δ − fold · δ).
(5)

It indicates that once the data record is dominated by one
skyline point, its final dominance flag must be E(1). This
updating process is illustrated in lines 7-12 of Algorithm 3.

Update sum value: Suppose a data record already has
an encrypted sum value E(σold), and the data record’s up-
to-date dominance flag is E(f). Meanwhile, we assume CS1

has already computed a minimum sum value E(MIN) (lines
7-8 in Algorithm 2), which guarantees that all sum values
of the original dataset must be larger than MIN. First, CS1

chooses a random number r ∈ Zn and generates E(r) by
Eq. (1). Then, CS1 obtains a new minimum sum value:
E(σmin) = E(MIN) + E(r) · E(−1) = E(MIN − r). Next, CS1

Dataset
!(#!)=!(%")
!(##)=!(%$)
!(#%)=!(%&)
!(#')=!(%()

Sorted index
E(0), E(1)
E(0), E(0)
E(1), E(1)
E(1), E(0)

Sorted Data
!(#!)
!(#&)
!(#$)
!(#()

Eq.	(4)

Sum
E(650) 
E(620) 
E(632) 
E(601) 

SS

Skyline Set
!(#1)
!(#&)

Must	be a skyline	point

SHDC,	; =	0

Since	SHDC(E(x!),	E(x"))	=	E(1)	

Updated flag
E(1)
E(1)

Updated sum
E(600 − .!)
E(600 − .#)

Eq.	(6) SS
Sorted index

E(0)
E(1)

600 − M" <	MIN	=	600

⟹ New	Round

New Dataset
!(##)
!(#')

Eq.	(5)
⟹ Stop!

Bit Seq.
01
11
00
10

Bit Seq.
1
0

Fig. 5. An exemplary secure skyline computation protocol under the
assumption of r2 < r1 ∈ Zn.

updates the data record’s sum value as follows:

E(σnew) = E(f) · (E(σmin − σold)) + E(σold)

= E(f · (σmin − σold) + σold).
(6)

If f = 0, E(σnew) = E(σold). On the other hand, if f = 1,
E(σnew) = E(σmin). In this case, E(σnew) must be less than
E(MIN) due to E(σmin) = E(MIN − r). Besides, since MIN >
n+ 1 and r ∈ Zn, MIN− r > 0. See details of updating sum
values from line 13 to line 18 in Algorithm 3.

If all sum values are updated, CS1 checks whether the
largest sum value is bigger than E(MIN) (line 29 and line
31 in Algorithm 2). If yes, CS1 launches a new round to
find new skyline points. Otherwise, CS1 stops the protocol.
When all sum values are less than E(MIN), it means all data
records in the current set are dominated. Here, the BIG
protocol can be achieved by making CS2 return plaintext µ
in the SBT subprotocol. Note that, since the updated values
(dominates flags and sum values) usually involve several
homomorphic multiplications in each round, we adopt the
bootstrapping protocol in [20] to refresh these ciphertexts.

Fig. 5 shows an example of our secure skyline computa-
tion protocol, in which there are four time series from Fig. 1.
The sorted indexes are computed by our SS protocol, seeing
Fig. 3 for details. In the example, E(~x1) must be a skyline
point, as it has the largest sum value. With SHDC protocol,
we can obtain that E(~x1) does not dominate E(~x3) (see the
first example in Fig. 4). Therefore, E(~x3) is a skyline point.

5.3 Description of Our Proposed Scheme
In this subsection, we present our privacy-preserving in-
terval skyline query scheme, which is comprised of four
phases: 1) system initialization; 2) data reporting and or-
ganization; 3) interval skyline search; and 4) data recovery.

5.3.1 System Initialization
In our scheme, the service provider SP initializes the entire
system. First, given security parameters (k0, k1, k2), SP calls
KeyGen(k0, k1, k2) of SHE to generate the secret key sk and
pp. Meanwhile, SP generates pk = {E(0)1,E(0)2, pp}. Then,
SP chooses a secure hash function H(), e.g., SHA-256, and
generates two master keys kp, ku for data providers and
data users, respectively.
•When a data provider pi with its identity IDpi registers

to the system, SP authorizes kpi = H(IDpi, kp) to pi.
•When a data user ui with the identity IDui registers to

the system, SP authorizes kui = H(IDui, ku) to ui.
Besides, since the recent data is often considered more

important in time series data [6], it is practical to maintain
the most recent timestamps. As a result, SP needs to choose
the size w (sliding window) for the most recent timestamps.
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Finally, SP publishes {H(), w, pk}, sends {kp, ku} to CS1,
and authorizes sk to CS2.

5.3.2 Data Reporting and Organization
If a data provider pi has a sensed data x

j
i at a time stamp

tj , it will encrypt xji into E(xji ) by using Eq. (1). Then, pi
computes H(E(xji ), kpi) with the authorized key kpi and
sends 〈pi, tj ,E(xji )〉||IDpi||H(E(xji ), kpi) to CS1.

Upon receiving it, CS1 first computes kpi = H(IDpi, kp)
with the authorized kp and then calculates H(E(xji ), kpi).
Next, CS1 extracts H(E(xji ), kpi) from the received message
and checks whether the calculated H(E(xji ), kpi) is the same
as the extracted one. If yes, CS1 accepts the reported data,
otherwise rejects. Afterward, CS1 randomly generates a
unique bit sequence bi = bρi |

dlog2 ne
ρ=1 for pi, where n is the

number of data providers, and bρi ∈ {0, 1}. If a new data is
reported, the data in t1 column will be expired, and a new
column tw+1 will be added. Note that, similar to [6], we
assume all time series are synchronized.

5.3.3 Interval Skyline Search
When a data user ui wants to use the interval sky-
line query services, he/she can first define a time inter-
val [tj1 : tj2 ] ⊂ [t1 : tw], tj1 < tj2 , and computes
H(tj1 ||tj2 , kui) with the authorized key kui. Then, ui sends
[tj1 : tj2 ]||IDui||H(tj1 ||tj2 , kui) to CS1. Using the same ap-
proach introduced in the data reporting and organization
phase, CS1 checks whether H(tj1 ||tj2 , kui) is correct. If yes,
CS1 first extracts the encrypted data from tj1 to tj2 for all
data provides and generates an encrypted dataset {E(~xi) =
(E(x1

i ),E(x2
i ), · · · ,E(xj2−j1+1

i )) | i ∈ [1, n]}. Then, CS1 runs
our secure skyline computation protocol (Section 5.2.2) to
obtain the desired interval skyline points {E(~ti) | i ∈ [1, k]},
where k is the number of skyline points.

To quickly respond to the interval skyline query, we
design a 2-dimensional look-up table, as shown in Fig. 6(a),
to index the interval skyline points. First, CS1 generates the
2-dimensional table, in which each cell is a pair: 〈start time,
time step〉. For example, 〈t2, 3〉 indicates the time interval
[t2, t5]. If a data user launches an interval skyline query
[t2, t5], CS1 stores the computed results under the cell after
responding to the query:
• If the time step is less than γ · log2 n, where γ ≥ n/k is

the balance ratio, CS1 directly stores the computed skyline
set Ssky under the cell.
• If the time step is larger than or equal to γ · log2 n, CS1

stores the sorted indexes {E(δρi )}, i ∈ [1, n], ρ ∈ [1, dlog2 ne].
This strategy can balance the storage costs and com-

putational costs. When another query request falls in the
cell (the time complexity of locating cell is O(1)), CS1 can
directly obtain the interval skyline or skip the SS protocol
to compute the interval skyline. It is worth noting that we
can store computed interval skyline for each cell. However,
it may consume more storage overhead than the above
strategy. This is because one of the characteristics of the
time series data is high-dimensional. When the range of
time interval [tj1 : tj2 ] is large, storing sorted indexes can
limit the number of ciphertexts to log2 n for each item and
make it independent with the range of time interval. In the
example of Fig. 6(a), if we suppose n = 4 and γ = 1,

(!!, #) (!!, $) (!!, %) (!!, &)

(!", #) (!", $) (!", %)

(!#, #) (!#, $)

(!$, #)

E('%%), E('%&)
E('&%), E('&&)

……
E(''%), E(''&)

E(t%%), E(t%&)
E(t&%), E(t&&)

……
E(t(%), E(t(&)

(a) 2-dimensional table

(!!, #) (!!, $) (!!, %) (!!, &)

(!#, #) (!#, $) (!#, %)

(!$, #) (!$, $)

(!%, #)

(!", #) (!", $) (!", %) (!", &)

(b) Update

Fig. 6. Two-dimensional look-up table, where w = 5 ranges from t1 to t5.

all the cells, whose time step is 1, will store the skyline
set. Others will store the sorted index. Meanwhile, it is
simple and efficient for the 2-dimensional table to support
the continuous updates over time. Fig. 6(b) shows that t1 is
expired, while t6 is added. It is worth noting that only the
cell (time interval) has been queried, the computed results
would be stored under the cell. Otherwise, the cell is empty.
This mechanism is built according to the following facts: i)
some cells may be queried frequently. ii) some cells may be
expired before being queried.

After obtaining the encrypted skyline set, CS1 will gen-
erate a random number r and compute {rji = H(i||j, r) | i ∈
[1, k], j ∈ [1, d], rji ∈ {0, 1}k1}. Then, CS1 adds these ran-
dom noises to the corresponding skyline point: E(tji + rji ).
Next, CS1 sends {E(tji + rji ) | i ∈ [1, k], j ∈ [1, d]} to CS2

and forwards r to the data user ui via a secure channel. For
CS2, it will recover {tji + rji | i ∈ [1, k], j ∈ [1, d]} with the
secret key sk of SHE and returns them to ui.

5.3.4 Data Recovery
Upon receiving r from CS1 and {tji + rji | i ∈ [1, k], j ∈
[1, d]} from CS2, ui first computes {rji = H(i||j, r) | i ∈
[1, k], j ∈ [1, d]}. Then, ui removes the random noises rji
from {tji + rji | i ∈ [1, k], j ∈ [1, d]}. Finally, ui can obtain
the skyline point {tji | i ∈ [1, k], j ∈ [1, d]} of the time
interval [tj1 : tj2 ].

6 SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme. Specifically, we will prove that our secure skyline
computation protocol can protect data records, query re-
sults, single-dimensional privacy, and access patterns.

Theorem 1. (Composition Theorem). If a protocol consists
of several subprotocols, the protocol is secure as long as the
subprotocols are secure and all the intermediate results are random
or pseudo-random.

We refer readers to [31] for the detailed proof of the com-
position theorem. In Fig. 7, we present the dependencies of
our proposed secure protocols. It is clear that we should first
prove that the SBT and SEQ subprotocols are secure, which
can demonstrate the security of SDC and SHDC protocols
according to Theorem 1. After analyzing the security of SS,
SDC, and SHDC, we can obtain the security of our secure
skyline computation protocol.

First of all, we briefly review the security model for
securely realizing an ideal functionality in the presence of
non-colluding semi-honest adversaries [31], [32].

Real-world execution. The real-world execution of a
protocol Π takes place between {CS1, CS2} and adversaries
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SBT	(Secure	Bigger	
Than)	Subprotocol

SEQ	(Secure	Equal)
Subprotocol

SDC	(Secure	Dominance	Check)	
Protocol

SS	(Secure	Sort)
Protocol

SHDC (Secure	High-dimensional	
Dominance	Check)	Protocol

Secure	Skyline	Computation	Protocol

Fig. 7. Dependencies of secure protocols

{A1,A2}, who corrupt CS1 and CS2, respectively. With the
input xi and auxiliary input zi (i = 1, 2), e.g., the length
of ciphertexts, the view of each party in the real-world
execution protocol Π in the presence of adversary A1 (A2)
is defined as

REALΠ,Ai,zi(xi)
def
= OUTΠ

i , i = 1, 2.
Ideal-world execution. In the ideal world execution,

there is an ideal functionality F for a function f , and the
servers interact only with F . Here, the view of each party
in an ideal-world execution in the presence of independent
simulators {Sim1, Sim2} is defined as

IDEALF,Simi,zi(xi)
def
= OUTFi , i = 1, 2.

In the above definitions, OUTi is the output of parties.

Definition 4 (Security against semi-honest adversaries). Let
F be a deterministic functionality and Π be a protocol between
two parties (servers). We say that Π securely realizes F if
there exists {Sim1, Sim2} of PPT (Probabilistic Polynomial Time)
transformations (where Simi = Simi(Ai), i = 1, 2) such that for
semi-honest PPT adversaries {A1,A2}, for all xi and zi, for each
party holds:

REALΠ,Ai,zi(xi)
c≈ IDEALF,Simi,zi(xi)

where
c≈ compactly denotes computational indistinguishability.

6.1 Privacy Preservation of SBT and SEQ Subprotocols

In this subsection, we use Definition 4 to show that the
SBT subprotocol is secure, i.e., it can preserve the privacy
of plaintexts.

Theorem 2. The SBT subprotocol securely determines the big-
ger than relation in the presence of semi-honest (non-colluding)
adversaries {A1,A2}.

Proof. Here, we show how to construct the independent
simulators: {Sim1, Sim2}.

Sim1 randomly chooses {m′1,m′2, δ′} and simulates
A1 as follows. It first generates ciphertexts {E(m′1),
E(m′2),E(δ′)} by the encryption algorithm of SHE. Then, it
outputs A1’s entire view. In the real execution, A1 receives
the ciphertext of {m1,m2, δ} whereas Sim1 gives {E(m′1),
E(m′2),E(δ′)} to A1 in the ideal execution. The semantic
security of SHE [20] guarantees that the views of A1 in the
real and the ideal executions are indistinguishable.

Sim2 runs A2 by randomly choosing θ′ and sending it to
A2, which is the view of A2 in the ideal execution. In the
real execution, A2 receives θ = s · r1 · (m1 −m2) − s · r2.
Since r1, r2 and s are randomly generated, the views of A2

in the real and the ideal executions are indistinguishable.
Note that, since θ′ is randomly chosen, it means µ′ will also
be randomly generated. A2 cannot distinguish the views in
µ′ and µ.

From the above proof, we can see that the SBT subpro-
tocol ensures the security of the plaintext of {m1,m2} and
the result δ, i.e., preserving the privacy of inputs and order
relations. In the SBT subprotocol, since r2 < r1, and s is
randomly generated, CS2 cannot infer whether m1 = m2

when m1 = m2. Therefore, the SBT subprotocol is privacy-
preserving.

Theorem 3. The SEQ subprotocol securely determines the equal-
ity relation in the presence of semi-honest (non-colluding) adver-
saries {A1,A2}.

Proof. Similar to the proof of Theorem 2, we can adopt
Definition 4 to show that the SEQ subprotocol is secure.
That is, it can preserve the privacy of plaintexts and equality
relations.

6.2 Privacy Preservation of SS, SDC, and SHDC Proto-
cols
Here, we show that our SS protocol is secure, i.e., it can
preserve the privacy of plaintexts.

Theorem 4. The SS protocol securely sorts {E(~xi) =
(E(x1

i ),E(x2
i ), · · · ,E(xdi )) | x

j
i ∈ M, i ∈ [1, n], j ∈

[1, d]} in the presence of semi-honest (non-colluding) adversaries
{A1,A2}.

Proof. Since CS1 always processes data records over their ci-
phertexts,A1 receives encrypted data in both views. Similar
to A1’s views in the SBT subprotocol, the semantic security
of SHE guarantees that the views of A1 in the real and the
ideal executions are indistinguishable.

Sim2 runs A2 as follows. First, Sim2 randomly chooses
{~x′i = (x′

1
i , x
′2
i , · · · , x′

d
i ) | x′

j
i ∈ M, i ∈ [1, n], j ∈ [1, d]},

and calculates σ′i =
∑d
j=1 x

′j
i , i ∈ [1, n]. After choosing n +

1 random numbers {r0, r1, · · · , rn} satisfying r0 > ri, i ∈
[1, n], it computes {σ̂′i = r0 · σ′i + ri | i ∈ [1, n]} and sends
them to A2, which is the view of A2 in the ideal execution.
In the real execution, A2 receives {σ̂i = r0 · σi + ri | i ∈
[1, n]}, where σi =

∑d
j=1 x

j
i . Since both x

j
i and x′

j
i ∈ M,

and n + 1 random numbers are chosen to perturb σi and
σ′i, the views of A2 in the real and the ideal executions are
indistinguishable.

The above proof shows that our SS protocol can preserve
the privacy of plaintexts {~xi = (x1

i , x
2
i , · · · , xdi ) | x

j
i ∈

M, i ∈ [1, n], j ∈ [1, d]} and results {E(δ̂ρi ) | 1 ≤ ρ ≤
dlog2 ne, i ∈ [1, n]} (proved in A1’s views).

Next, we prove that the SDC and SHDC protocols are
secure, i.e., they can protect inputs, results, and single-
dimensional privacy.

Theorem 5. The SDC and SHDC protocols securely determine
dominance relations without leaking inputs, the protocol results,
and the single-dimensional privacy.

Proof. SDC: As shown in Fig. 7, the SDC protocol consists
of the SBT and SEQ subprotocols. Recalling Section 5.1.2,
before running SEQ and SBT subprotocols, the SDC protocol
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generates {θi | i ∈ [1, d]}, α, and β. Since all of these values
are random, and these subprotocols are secure (Theorem 2
and Theorem 3), we can prove that the SDC protocol is
secure according to Theorem 1. That is, the SDC protocol
can protect the plaintext of data records and protocol result
from leaking. Besides, since the SDC protocol uses the flip-
coin mechanism to randomly adjust the order relation of
two values, it can protect the single-dimensional privacy,
i.e, the order or equality relation of each dimension’s values.
Thus, the SDC protocol is privacy-preserving.

SHDC: If our SHDC protocol determines the dominance
relation of two data records by leaf nodes, it has the same
security as the SDC protocol. On the other hand, if the
dominance relation is determined by non-leaf nodes, CS1

and CS2 can know whether one data record does not
dominate the other one. It is a trivial leakage, denoted as
L = {xi1 6� xi2 | i1 6= i2}, because CS1 and CS2 only know
there exists one dimension j ∈ [1, d] that xji1 < x

j
i2

. Since
neither CS1 nor CS2 knows which dimension has such the
order relation, the single-dimensional privacy is protected
in our SHDC protocol. Thus, our SHDC protocol is privacy-
preserving.

6.3 Privacy Preservation of The Proposed Secure Sky-
line Computation Protocol
In this subsection, we first prove that our secure skyline
computation protocol can preserve the privacy of inputs, the
protocol results, and the single-dimensional privacy. Then,
we show that our secure skyline computation protocol can
hide access patterns.

Theorem 6. The secure skyline computation protocol securely
computes skyline points without leaking inputs, the protocol
results, and the single-dimensional privacy.

Proof. From Algorithm 2, we can see that all of the interme-
diate results are random. According to Theorem 1, our se-
cure skyline computation protocol can ensure the plaintext
of data records and protocol results without leaking. For
single-dimensional privacy, it only involves the SHDC pro-
tocol. Although there is a trivial leakage L, we have proved
that the single-dimensional privacy is preserved in our
SHDC protocol. Therefore, our secure skyline computation
protocol can preserve the single-dimensional privacy.

Theorem 7. The secure skyline computation protocol can hide
the information about which data records in {E(~xi) | i ∈ [1, n]}
are selected as skyline points.

Proof. We prove Theorem 7 by showing neither CS1 nor CS2

knows which data records are selected as skyline points.
For CS1. From Algorithm 2, there are two cases for a data

record to be added into the skyline set.
Case 1: A data record that is not dominated by any

skyline point is a skyline point (line 22 in Algorithm 2).
Since our SS protocol returns the encrypted sort index
{E(δρi )}, and the data record is computed from

∑n
l=1 E(xjl ) ·∏dlog2 ne

ρ=1 (bρl � E(δρi )), j ∈ [1, d], i ∈ [1, n], CS1 cannot link
the computed data record to the data record in the dataset
{E(~xi) = (E(x1

i ),E(x2
i ), · · · ,E(xdi )) | i ∈ [1, n]}. Therefore,

CS1 does not know which item is selected as skyline point
in this case.

Case 2: A data record that has the maximum sum value
is a skyline point (line 12 in Algorithm 2). Similarly, the data
point is calculated by

∑n
l=1 E(xjl ) ·

∏dlog2 ne
ρ=1 (bρl �E(δρ1)), j ∈

[1, d] (line 11). Consequently, CS1 does not know which item
is selected as skyline point in this case.

For CS2. From Algorithm 2, we can see that CS2 can get
information when running the SS and SHDC protocols.

SS: CS2 obtains the perturbed sum value of each data
record. Besides, before sending encrypted sum values to
CS2, CS1 randomly permutes them with the XOR gate.
Therefore, CS2 cannot link these sum values to the corre-
sponding data records.

SHDC: For the non-leaf nodes, CS2 can learn the infor-
mation about one data record does not dominate the other one by
observing whether θ = r1 · (σl2 − σl1) · (σr2 − σr1) + r2 > 0,
where σli and σri (i = 1, 2) are partial sum values (see details
in Section 5.1.3). However, CS2 cannot link the partial
sum values to the corresponding data record due to the
perturbation and permutation. When reaching leaf nodes,
our SHDC protocol will invoke the SDC protocol. However,
Theorem 5 shows that CS2 learns nothing from the SDC
protocol. Therefore, CS2 does not know which items are
selected as skyline points.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme. From Section 5.3, we know that the data reporting
and data recovery phases only involve data encryption and
noise removal, respectively, which are efficient and intuitive
in terms of performance. Therefore, in this section, we focus
on the performance of the interval skyline search phase.

Experimental setting: We implemented our scheme in
Java and executed it on a machine with 16 GB memory,
3.4 GHz Intel(R) Core(TM) i7-3770 processors, and Ubuntu
16.04 OS. In our experiments, we adopt two real-world time
series datasets and illustrate the detailed information in
Table 2. For simplicity sake, we denote these two datasets
as Gas and Electricity, respectively. It is worth noting there
are around 100,000 time stamps in the Electricity dataset. We
filter out the missing values (the value of two consecutive
time stamps is 0), and the effective timestamps are 10,303.

TABLE 2
Real-world datasets used in our experiments

Name Time series (n) Timestamps (d)

Greenhouse Gas Observ-
ing Network Data Set [33]

2912 327

Electricity Load Diagrams
Data Set [34]

315 10303

To ensure privacy, we set τ = 4 in our SHDC protocol,
i.e., the number of dimensions of non-leaf nodes should
be larger than 4. For security parameters of SHE, we let
k0 = 4096, k1 = 40, k2 = 160 in our evaluations. The
reasons for choosing these values as security parameters are
i) k1 is related to the space of plaintexts. In our experiments,
since the space (220) can fully cover the plaintext value, we
let k1 = 2 × 20 = 40 bits; ii) k2 indicates the size of the
secret key. We set k2 = 160 bits to guarantee the security
of the secret key; iii) for k0, it is related to the ciphertext
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Fig. 11. Communication costs varying with n.

size. We set k0 = 4096 bits to support more homomor-
phic multiplication-I operations. Please see Section 3.2 for
detailed information about the plaintext space, secret key
size, and ciphertext size.

7.1 Performance of Our Proposed Scheme
In this subsection, we evaluate the computational cost and
the communication cost of the basic and secure skyline
computation protocols by varying the number of time series
n and timestamps (dimensions) d on Gas and Electricity
datasets. Here, we respectively denote these two protocols
as basic protocol and secure protocol in the following.
• Computational cost of searching interval skyline. Fig. 8

depicts the search time varying with d, in which Fig. 8(a)
shows the evaluation over Gas dataset and n = 1000, while
Fig. 8(b) shows the evaluation over Electricity dataset and
n = 100. In Fig. 8(a), the search time of the secure protocol is
more than the basic protocol when d is small. It is reasonable
since, in the Gas dataset, the number of skyline points is not
changed when we vary d. When d is small, it means that CS1

has a high probability of obtaining the dominance relations
from the leaf nodes, leading to more rounds to get the whole
skyline points. However, when d is large, CS1 may get the
dominance relation from non-leaf nodes, leading to fewer
rounds. When the number of rounds is 1, the computational
cost of the secure protocol is equivalent to using the SFS
algorithm and has a similar search time to the basic protocol.
The trend of Fig. 8(b) is also related to the number of rounds.
To clearly show the reason, we plot the number of rounds
in the corresponding reduced figure.

Fig. 9 plots the search time varying with n, in which
Fig. 9(a) shows the evaluation over Gas dataset and d = 100,
while Fig. 9(b) shows the evaluation over Electricity dataset
and d = 1000. In both figures, since the secure protocol
computes the skyline points with one round in the most
cases, it means that dominance relations are determined
by the non-leaf nodes of our SHDC protocol. Therefore,
our secure protocol has a similar search time as the basic
protocol.

• Communication cost of searching interval skyline. Fig. 10
and Fig. 11 depict the communication cost of the secure
and basic protocols, in which we vary n and d, respectively.
For simplicity sake, we measure the communication cost by
the number of ciphertexts sent between two servers: CS1

and CS2. This is reasonable since counting the number of
ciphertexts is equivalent to counting the number of bytes
that can be easily calculated with: the number of bytes = the
number of ciphertexts ×2k0/8, where k0 = 4096. Besides,
since the size of plaintexts is significantly smaller than that
of ciphertexts, we do not consider the communication cost
of plaintexts in our SS protocol.

Fig. 10(a) and Fig. 10(b) show the similar trends to
Fig. 8(a) and Fig. 8(b), respectively. That is because the
communication cost is also related to the number of rounds.
However, Fig. 11 shows a different trend. In Fig. 11(a),
since the numbers of skyline points and rounds are not
changed when n is increasing over the Gas dataset, the
communication cost of the secure and basic protocol is close.
In Fig. 11(b), the secure protocol has more communication
cost than the basic protocol. That is because the number of
skyline points k would affect the communication costs if
k is relatively small compared to the whole dataset. In our
protocols, each skyline point is used to check the dominance
relation with candidate points. Therefore, the more skyline
points will result in the more communication costs. In the
experiment of Fig. 11(b), the number of skyline points is
{2, 6, 4, 1, 2, 2} for the dataset size from 50 to 300. Thus,
the trend in Fig. 11(b) is reasonable. Note that, when n
is 200, the number of skyline points is 1. In this case, the
communication cost of the secure protocol should be similar
to that of basic protocol (See Algorithms 1 and 2). Fig. 11(b)
demonstrates the correctness of our analysis.

7.2 Comparing Dominance Check Protocols
In the process of skyline search, the core component is
the secure dominance check protocol that can determine
whether two encrypted data records have a dominance rela-
tion. In this paper, we introduce a secure dominance check
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Fig. 12. Computational costs varying with d.

(SDC) protocol and propose a secure high-dimensional
dominance check (SHDC) protocol to determine the dom-
inance relation. Both of them can preserve the privacy of
plaintexts and single-dimensional privacy. In [12], Liu et al.
also proposed a secure dominance check protocol, hereafter
we denote it as Liu’s SDOM, which can be used in our
scheme. As a result, in this subsection, we will compare
the SDC, SHDC, and Liu’s SDOM protocols in terms of
computational and communication costs.

However, Liu’s SDOM protocol employs the Paillier
encryption, which is more expensive than the SHE scheme
used in our protocol. Thus, to be fair, we implemented
Liu’s SDOM protocol with SHE and compare these protocols
based on the same cryptographic primitive. It is worth
noting that: i) by selecting suitable security parameters, SHE
and Paillier can have the same security strength; ii) all of
these three protocols (SDC, SHDC, and Liu’s SDOM) can
be achieved with Paillier or SHE; iii) the SDC and SHDC
protocols have the same security level as Liu’s SDOM if the
same underlying encryption scheme is adopted. In addition,
although the scheme in [35] is more efficient than that of
in [12], it is still reasonable to compare the SDC and SHDC
protocols with Liu’s SDOM protocol in [12]. This is because
the work in [35] uses the same secure protocols as [12] and
applies the parallelization technology at the dataset level.
Therefore, evaluating the performance of [12] is equivalent
to evaluating the performance of [35] if other comparison
works can also use the designed parallelization technology.
• Comparing computational costs. From Section 5.1.2, 5.1.3,

and [12], we know that the computational cost of these
three protocols is only related to the number of dimensions.
Accordingly, Fig. 12 depicts average execution costs of the
SDC, our SHDC, and Liu’s SDOM varying with the number
of dimensions from 10 to 100. Fig. 12(a) and Fig. 12(b) show
the evaluations over Gas and Electricity datasets, respec-
tively. Both figures show that our protocol can improve the
efficiency of determining dominance relation by at least two
orders of magnitude compared to Liu’s SDOM protocol.
That is because: i) the secure comparison subprotocol (SBT)
used in our protocol is more efficient than that of Liu’s
SDOM [36]; ii) our designed algorithm is more efficient.
That is, we determine whether ∀j ∈ [1, d] xj1 ≥ x

j
2 by testing

whether α = β (see details in Section 5.1.2), while Liu’s
SDOM protocol checks all dimensions one by one.

It is interesting that the computational cost of our SHDC
protocol is much less than the SDC protocol in Fig. 12(a),
whereas it is slightly more computationally expensive in
Fig. 12(b). This is reasonable since most of the data records
in the Gas dataset have no dominance relation with each
other and thus make our SHDC protocol determine the
dominance relation by the non-leaf nodes of DC-tree instead
of leaf nodes. It can greatly improve performance and, it is
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Fig. 13. Communication costs varying with d.

our intention to design such a high-dimensional protocol.
While for the Electricity dataset, there exist several data
records that can dominate others. As a result, our SHDC
protocol determines dominance relations by leaf nodes of
DC-tree, i.e., invoking SDC protocol, in most cases. There-
fore, the computational cost of SHDC protocol is approx-
imately equivalent to time cost of checking non-leaf nodes +
time cost of SDC protocol. Thus, for the Electricity dataset,
our SHDC protocol takes more time than the SDC protocol.
• Comparing communication costs. Fig. 13 plots the number

of transferred ciphertexts of these three protocols vary-
ing with the number of dimensions, in which Fig. 13(a)
shows the communication cost over the Gas dataset, while
Fig. 13(b) is over the Electricity dataset. Both figures show
that our protocol entails at least 23× improvement in the
communication cost compared to Liu’s SDOM protocol. The
reason is that it needs d + 5 ciphertexts to achieve the SDC
protocol, while it is 2(d+ 1)(l+ 1) for Liu’s SDOM protocol,
where d is the number of dimensions and l is the largest
bit length of values in the evaluated dataset. Meanwhile,
we can see that our SHDC protocol is always better than
the SDC protocol in both datasets. For the Gas dataset,
since checking dominance relation in non-leaf nodes only
needs to send one ciphertext to CS2, our SHDC protocol
is significantly more efficient in the communication cost
when determining dominance relations by non-leaf nodes.
For the Electricity dataset, although the dominance relation
is determined by leaf nodes, and additional communication
costs, i.e., the transmitted ciphertexts of non-leaf nodes, are
incurred, the average transmitted ciphertexts of our SHDC
protocol are slightly less than that of the SDC protocol. It is
because the benefits of determining dominance relations by
non-leaf nodes outweigh the incurred costs. This trend will
be more obvious when the number of dimensions is large,
as shown in the reduced figure in Fig. 13(b).

8 RELATED WORK

Privacy-preserving skyline queries have attracted consider-
able attention in the database community [11]–[14], [37],
[38]. In 2013, Bothe et al. [11] mapped the problem of
computing skyline into determining the non-descending
series that was computed with the scalar products among
sub-vectors of tuples. However, since the simple matrix
encryption was adopted to encrypt the sub-vectors of tuples,
this scheme is not semantically secure, and an adversary
can launch a known plaintext attack to infer the secret keys.
Zaman et al. [37] proposed a secure skyline computation
scheme in MapReduce. It aimed to support the multi-
party secure computation and assumed a trusted party:
Coordinator, who can obtain the order of data on each
dimension. Since the Coordinator must know the order
relations of each dimension to compute skyline, the skyline
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computation approach in [37] cannot be applied to our
scheme due to the security considerations. In 2017, Liu et
al. [12] proposed a fully secure skyline computation scheme
for dynamic skyline queries. This scheme can protect the
plaintexts, single-dimensional privacy, and access patterns
from leaking. However, it suffers from the performance
issues due to the inefficient basic protocols. In [35], Liu et al.
further presented a parallel version of [12] by designing and
applying a parallelization technology. The work in [35] uses
the same secure protocols as [12] and applies the paralleliza-
tion technology to improve performance. Recently, Wang et
al. [14] also designed a secure scheme to deal with dynamic
skyline queries. This scheme adopted the order-revealing
encryption (ORE) as the cryptographic primitive, leading to
the information leakage in single-dimensional privacy. The
work in [38] proposed a secure skyline computation scheme
for user-defined skyline queries. It also has the problem
in performance due to the expensive encryption. Besides,
it extended a d-dimensional data record to 2d dimensions
for skyline computation, which is hard to be applied to
high-dimensional data. In 2019, Zheng et al. [13] designed
a skyline computation protocol by determining dominance
relations over encrypted data. However, their work did not
consider the single-dimensional privacy and access patterns.

Although some works also considered secure skyline
queries, they focused on other techniques and cannot be
used in our scenario. In 2016, Chen et al. [39] devised three
secure skyline query schemes. However, these schemes are
for the location databases and aim to verification instead
of privacy preservation. In [40], Wang et al. proposed a
hardware-aided secure skyline query scheme, in which
some “hard-to-compute” operations are shifted to SGX.
Recently, Zeighami et al. [41] proposed an approach to use
query result materialization for answering dynamic skyline
queries on encrypted data, which focuses on the skyline
result materialization and is not in line with our scenario.

9 CONCLUSION

In this paper, we have proposed an efficient and privacy-
preserving interval skyline query scheme over encrypted
time series data, which can preserve the privacy of plain-
texts, single-dimensional privacy, and access patterns while
ensuring efficiency. Specifically, we first specified the in-
terval skyline query and introduced the symmetric homo-
morphic encryption (SHE). Then, we presented SBT and
SEQ subprotocols and privacy-preserving logic gates. Based
on these building blocks, we designed a secure sort (SS)
protocol to sort the encrypted dataset. Further, to deal with
high-dimensional time series data, we designed a DC-tree
and proposed our SHDC protocol. With these protocols, we
proposed our secure skyline computation protocol. Finally,
we analyzed the security of our scheme and conducted
extensive experiments to evaluate it, and the results illus-
trate that our scheme is efficient in both computation and
communication.
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